Identifying the Effect of Non-Ideal Mixing on a Pre-Denitrification Activated Sludge System Performance through Model-Based Simulations

Malek Hajaya

Civil Engineering Department, Tafila Technical University, Tafila 66110, Jordan

Effectiveness of a pre-denitrification activated sludge treatment system is governed by the kinetics of the biological reactions, and the hydrodynamic mixing behavior in the reactors. Achieving good mixing conditions within a reactor not only enhances the transfer of reactants but also ensures homogeneous environmental conditions throughout the vessel when required, allowing for an effective usage of the reactor’s total volume, leading to optimized, low-cost operation. In this work, a pre-denitrification activated sludge system performance with regards to the biological treatment of organic carbon and nitrogen was investigated, under two scenarios for non-ideal mixing in the anoxic reactor. The system performance is simulated based upon the Activated Sludge Model 1 model’s biological reactions, and combining two non-ideal mixing two-parameter models: CSTR with bypass and dead volume, and two CSTRs with exchange. Performance discrepancies were then identified in the presence of non-ideal mixing. The system’s performance was found to be more susceptible to the presence of a dead volume/bypass scenario compared to the two CSTRs with material exchange scenario. Under non-ideal mixing conditions, effluent concentrations of Total Kjeldahl Nitrogen, organic carbon increased marginally, while effluent concentration of nitrate increased significantly. Similarly, the waste stream concentrations of Total Kjeldahl Nitrogen and organic carbon increased significantly as a result of an increase in the concentration of the heterotrophic biomass. The outcome of this study provides an insight when troubleshooting the operation of pre-denitrification activated sludge systems for non-ideal mixing conditions.

Keywords: Non-ideal mixing, Activated sludge, Dead volume, Bypass, Material exchange

Introduction

Activated Sludge (AS) systems are among the most widely employed biological treatment processes in wastewater treatment plants (Rittmann and McCarty, 2001). AS systems are engineered processes, designed and operated to sustain and facilitate the growth of different microorganisms. These microorganisms in their part treat wastewaters biologically by incorporating/removing the pollutants in their different metabolic and growth associated processes. Those pollutants are mainly comprised of dissolved and particulate organic carbon and nitrogen-containing compounds. The main biological processes leading to wastewater treatment taking place in AS systems, and the associated microorganisms responsible for them are organic carbon mineralization under aerobic and anoxic conditions by facultative heterotrophic bacteria, ammonia (NH₃) oxidation under aerobic conditions to nitrate (NO₃⁻) by autotrophic nitrifying bacteria, and nitrate reduction under anoxic conditions to nitrogen gas (N₂) by the aforementioned facultative heterotrophic bacteria (utilized instead of oxygen in the metabolic process) (Madigan and Martinko, 2006; Tchobanoglous et al., 2007). Pre-denitrification is (PD) one approach for the operation of AS (Hellringa et al., 1999; Kim et al., 2009). The required environmental conditions (anoxic and aerobic) are divided between two distinctive Continuous-flow stirred-tank reactors (CSTRs), and the microorganisms (biomass) are circulated between them. Figure 1 illustrates the process scheme. The anoxic reactor receives both fresh organic carbon and ammonia containing wastewater and a nitrate-rich, biomass containing, mixed liquor recycle from the aerobic reactor, where a portion of organic carbon is mineralized and nitrate is reduced to nitrogen gas. Anoxic reactor effluent carries the remaining untreated wastewater to the aerobic reactor, where air is supplied to sustain an elevated oxygen concentration, and enhanced mixing conditions. The remaining organic carbon is completely mineralized and ammonia is oxidized to nitrate. The settler allows for biomass to be separated from the mixed liquor, and recycled back so that the system’s solids retention time is controlled independently from the system’s hydraulic retention time (Tchobanoglous et al., 2007). Effectiveness of a PD-AS treatment system is governed by the kinetics of the biological reactions, and the hydrodynamics of mixing in the reactors. The different reactions and processes taking place in a PD-AS system were first identified and modeled by the International Water Association (IWA) Activated Sludge Model 1 (ASM1) (Henze et al., 2000), and since employed in a wide variety of studies (Alex et al., 2008; Hajaya and Pavlostathis, 2013; Ostace et al., 2011; Van Loosdrecht et al., 2015). Ideal mixing conditions are commonly assumed while designing biological reactors for wastewater treatment processes (Vanrolleghem et al., 2003). Achieving good mixing conditions within reactors not only enhances the transfer of substrates (reactants) but also ensures homogeneous environmental conditions throughout the vessel, thereby, allowing for an effective usage of the reactor’s total volume leading to optimized and low-cost operation (Badkoubi et al., 1998; García et al., 2005).

Received on January 27, 2019, accepted on April 13, 219. Correspondence concerning this article should be addressed to Malek Hajaya (E-mail address: malkhajaya@yahoo.com or mhajaya@ttu.edu.jo). ORCID ID for Malek Hajaya: https://orcid.org/0000-0003-0110-6731.
Despite the assumption of ideal mixing in biological reactors, it is likely non-ideal mixing conditions will prevail in the real situation. Kjellstrand (2006) studied the hydraulic behavior of a denitrifying activated sludge tank, located at the Rya Wastewater treatment plant (WWTP) in Göteborg Sweden, where it was found that up to 30% of the feed had notably fast hydraulic retention times, while up to 21% of the feed had notably slow hydraulic retention times compared to the nominal hydraulic retention time. This indicated the presence of feed bypass and stagnation zones in the system. Sánchez and coworkers (Sánchez et al., 2016) performed the hydraulic characterization for the secondary treatment system in the WWTP of San Pedro del Pinatar. They reported that only 70.5% of the system’s volume was active, while the remaining 29.5% was actually a dead volume. Collivignarelli and coworkers (Collivignarelli et al., 2018) reported a dead volume fractions ranging from 15% to 25%, and bypass fractions ranging between 35% and 40%, while performing the experimental verification of reactor hydrodynamics for an undisclosed WWTP. Manenti and coworkers (Manenti et al., 2018) have identified a 5% fraction of dead volume in a pilot-scale WWTP. Non-ideal mixing occurrences in AS systems were reported for constructed, operational wastewater treatment plants, which could be brought by poor design or equipment failure. The cost of diagnosing their presence in such systems could be drastically reduced if mathematical simulations are used. The purpose of this work is to identify the possible consequences of non-ideal mixing on the biological processes performance. Such discrepancies in performance can be used in identifying the presence of non-ideal mixing behavior in the AS system reactors. In this work, a pre-denitrification activated sludge (PD-AS) unit performance with regards to the biological treatment of organic carbon and nitrogen is investigated under the conditions of non-ideal mixing in the anoxic reactor. The system performance is simulated based upon the ASM1 model’s biological reactions (Henze et al., 2000), and combining two non-ideal mixing two-parameter models: CSTR with bypass and dead volume, and two CSTRs with exchange (Fogler, 1999). Performance discrepancies could then be identified by comparing the performance of the system under non-ideal mixing to performance of the system at ideal mixing conditions.

1. Mathematical Models
1.1 Biological reactions

The ASM1 model identified the specific processes in PD-AS to be: aerobic growth of heterotrophs, anoxic growth of heterotrophs, aerobic growth of autotrophs, decay of heterotrophs, decay of autotrophs, ammonification of soluble organic nitrogen, hydrolysis of entrapped organics, and hydrolysis of entrapped organic nitrogen (Henze et al., 2000). Tables 1 detail each process mathematical model, where S denotes the soluble constituents’ concentrations, and X denotes particulate constituents’ concentrations, while Table 2 lists the different variables associated with the aforementioned processes, with the kinetics of each step involved in the PD-AS system.

1.2 Ideal completely mixed reactors model

Figure 2 shows the PD-AS system. In this work, both the widely adapted COAST benchmark and BSM1 benchmark (Alex et al., 2008; Copp, 2002) are used for system size, albeit with some modifications. The system is designed for an average wastewater flow rate (Q) of 18400 m3/day, with 300 mg COD/L of biodegradable organic carbon and 50 mg N/L of nitrogen. Volumes of the anoxic and aerobic reactors are 2000 m3 (V_1) and 4000 m3 (V_2), respectively, with nitrate, recycle ratio (R_1) and solids recycle ratio (R_2) of 3 and 1, respectively. The waste flow rate (Q_w) is chosen for a 16-day SRT to be at 385 m3/day. Air is only introduced into the aerobic reactor to sustain an oxygen concentration of 2.1 ± 0.11 mg/L. The settler sub-model is not included in the system, and it is assumed that no reactions are taking place in it; instead, a particulates separation coefficient (SE) is assumed and used to calculate the concentration in the settler overflow (final effluent) and underflow. Particulate concentration (X) in both the settler’s overflow (X_{OF}) and underflow (X_{UF}) is determined by mass balance around the settler, by using a settling efficiency (SE), which is assumed constant (Le Moullec et al., 2011) and can be defined as SE=Particulate mass in the underflow/ Particulate mass in the overflow.
\[X_{UP} = \frac{[SE \cdot Q \cdot X_2 \cdot (R_2 + 1)]/[R_2 \cdot Q + Q_W]}{\ldots} \]
\[X_{OF} = \frac{[(1-SE) \cdot Q \cdot X_2 \cdot (R_2 + 1)]/[Q + Q_W]}{\ldots} \]

where \(X_i \) is particulate concentration (mg COD/l) in the aerobic reactor.

Table 1 Biological processes taking place in the PD-AS, adapted from the ASM1 model (Henze et al., 2000)

<table>
<thead>
<tr>
<th>Process</th>
<th>Model</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic growth of heterotrophs</td>
<td>(\mu_H S_2 / (S_2 + K_s S_2 + K_{OH}) X_{BH})</td>
<td>(P_1)</td>
</tr>
<tr>
<td>Anoxic growth of heterotrophs</td>
<td>(\mu_H S_2 / (S_2 + K_s S_2 + K_{OH} S_{NO} + K_{NH}) X_{BH})</td>
<td>(P_2)</td>
</tr>
<tr>
<td>Aerobic growth of autotrophs</td>
<td>(\mu_A S_{NH} / (S_{NH} + K_s S_0 + K_{OA} X_{BA}))</td>
<td>(P_3)</td>
</tr>
<tr>
<td>Decay of heterotrophs</td>
<td>0</td>
<td>(P_4)</td>
</tr>
<tr>
<td>Decay of autotrophs</td>
<td>(b_a X_{BA})</td>
<td>(P_5)</td>
</tr>
<tr>
<td>Ammonification of soluble organic nitrogen</td>
<td>(k_p S_{NO} X_{BH})</td>
<td>(P_6)</td>
</tr>
<tr>
<td>Hydrolysis of entrapped organics</td>
<td>(k_h \frac{X_2}{X_{BH}} / (S_0 + K_{OH} S_{NO} + K_{NH} S_{NO} + K_{OH}))</td>
<td>(P_7)</td>
</tr>
<tr>
<td>Hydrolysis of entrapped organic nitrogen</td>
<td>(P_h X_{BH} / X_2)</td>
<td>(P_8)</td>
</tr>
</tbody>
</table>

Table 2 State variables in the PD-AS model and their associated rates

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_i^c)</td>
<td>Soluble inert organics</td>
<td>(r_{sa} = 0)</td>
</tr>
<tr>
<td>(S_i^r)</td>
<td>Readily biodegradable (soluble) substrate</td>
<td>(r_{Ss} = \frac{1}{\mu_H} (P_1 + P_2) + P_3)</td>
</tr>
<tr>
<td>(X_i^c)</td>
<td>Particulate inert organics</td>
<td>(r_{xa} = 0)</td>
</tr>
<tr>
<td>(X_i^r)</td>
<td>Slowly biodegradable (particulate) substrate</td>
<td>(r_{xs} = (1 - f_p)(P_4 + P_3) - P_7)</td>
</tr>
<tr>
<td>(X_{A}^a)</td>
<td>Active heterotrophic biomass</td>
<td>(r_{xb} = P_1 + P_2 - P_4)</td>
</tr>
<tr>
<td>(X_{A}^a)</td>
<td>Active autotrophic biomass</td>
<td>(r_{xba} = P_3 - P_5)</td>
</tr>
<tr>
<td>(X_i^p)</td>
<td>Non-biodegradable particulates</td>
<td>(r_{xp} = f_f(R_a + P_3))</td>
</tr>
<tr>
<td>(S_0^b)</td>
<td>Dissolved oxygen</td>
<td>(r_{so} = \frac{1}{\mu_H} P_4 - 4.57 - \frac{y_a}{\mu_H} P_3)</td>
</tr>
<tr>
<td>(S_{NO}^c)</td>
<td>Nitrate</td>
<td>(r_{sNO} = \frac{1}{2.86 y_a} P_2 + \frac{y_a}{\mu_H} P_3)</td>
</tr>
<tr>
<td>(S_{NH}^c)</td>
<td>Free and ionized ammonia</td>
<td>(r_{sNH} = \frac{-4 P_3}{\mu_H} P_5 - \frac{1}{\mu_H} (P_4 + P_3) + P_6)</td>
</tr>
<tr>
<td>(S_{AE}^c)</td>
<td>Soluble biodegradable organic nitrogen</td>
<td>(r_{sAE} = \frac{1}{\mu_H} (K_{NH} - f_f K_f) (P_4 + P_3) - P_6)</td>
</tr>
<tr>
<td>(S_{AI}^c)</td>
<td>Particulate biodegradable organic N</td>
<td>(r_{sAI} = \frac{1}{\mu_H} P_7 - \frac{y_a}{\mu_H} P_2)</td>
</tr>
</tbody>
</table>

\(a: \text{mg COD/L, } mg \text{ of Chemical Oxygen Demand}; b: \text{mg O}_2/L; c: \text{mg N/L}; d: \text{mol/L} \)

Assuming ideal CSTR behavior in the anoxic and aerobic reactors, constant liquid densities and reactor volumes, and reactions taking place only in the reactors, the following equations can be used to describe the dynamic behavior of soluble (S) and particulate constituents:

For the anoxic reactor:

\[dS_1/dt = (Q/V_1) ([S_1 + S_2(R_1 + R_2)] - [1 + R_1 + R_2] S_1) + r_{s1} \ldots \]
\[dX_1/dt = (Q/V_1) ([X_1 + X_2 R_1 + X_{UP} R_2] - [1 + R_1 + R_2] X_1) + r_{x1} \ldots \]

For the aerobic reactor:

\[dS_2/dt = (Q[1 + R_1 + R_2]/V_2)(S_2 - S_2) + r_{s2} \ldots \]
\[dX_2/dt = (Q[1 + R_1 + R_2]/V_2)(X_2 - X_2) + r_{x2} \ldots \]

Where \(S_i \) and \(X_i \) are the concentrations in the anoxic reactor, \(S \) and \(X \) are the concentrations in the feed wastewater (Table 3), and \(S_2 \) and \(X_2 \) are the concentrations in the aerobic reactor, respectively. \(X_{UP} \) is the particulate concentrations in the solids recycle (Equation 1), and \(r_{sAI} \) and \(r_{xAI} \) are the rates in the different reactors (Table 2). Finally for oxygen, in the aerobic reactor, the following rate is
introduced to represent the aeration rate \(r_{\text{Air-in}} \): \[
 r_{\text{Air-in}} = K_i (S_0^{\text{SAT}} - S_{O2})
\] (7)
where \(K_i \) is the oxygen transfer coefficient \((d^-1) \) maintained at a level in the aerobic reactor to provide a constant oxygen concentration (as mentioned above) (Alex et al., 2008), and \(S_0^{\text{SAT}} \) is oxygen saturation concentration =8mg/L, (at 26°C and 1atm) (Rittmann and McCarty, 2001), and \(S_{O2} \) in the oxygen concentration in the aerobic reactor (mg/L).

1.3 Non-ideal mixing models

Among the PD-AS system reactors, the anoxic reactor is the most susceptible to the occurrence of non-ideal mixing. Mixing in this reactor is solely performed mechanically, compared to superior mixing conditions (minimizing non-ideal mixing) brought by the aeration process taking place in the aerobic reactor. Accordingly, the non-ideal mixing scenarios are assumed to affect the anoxic reactor in the PD-AS. Oxygen concentration and settler behavior are handled in the same matter as discussed above in the ideal CSTR based system.

![Fig. 2 Non-ideal, real mixing scenarios; A: Bypass with dead volume, and B: Rapid and slow mixing.](image)

1.3.1 CSTR with bypass and dead volume

In this situation, poor mixing results in generating a dead zone within the reactor volume, where limited or no exchange of material is taking place between it and the remaining reactor volume. This will reduce the available volume for reactions within the reactor itself. In addition, poor mixing can allow for a portion of the feed to exit rapidly without being mixed inside the reactor, as if that portion is totally not entering the reactor, but rather bypassing it directly to the effluent (**Figure 2.A**). Previous scenarios are modeled as a combination of an ideal CSTR coupled with a dead zone. These volumes are defined as fractions of the total reactor volume \(V \), where \(a = \text{volume of CSTR}/V \) and \((1-a) = \text{volume of dead zone}/V \). On the other hand, flow rates headed for the reactor \((Q) \) have a fraction that bypasses it while the remaining fraction enters it, where \(\beta = \text{bypassed flow}/Q \) and \((1-\beta) = \text{entering flow}/Q \) (Fogler, 1999). The degree of nonideality depends on the values of \(a \) and \(\beta \). The presence of a bypass and a dead volume in real engineered biological reactors has been previously reported (Collivignarelli et al., 2018; Kjellstrand, 2006; Manenti et al., 2018; Sánchez et al., 2016). In light of the previous argument, the dynamic behavior of soluble and particulate constituents in both reactors no longer behaves as described by Equations 3, 4, 5, and 6. Assuming constant values for \(a, \beta \) (for all streams entering), liquid densities and reactor volumes, and reactions taking place only in the reactors, the following equations can be used to describe the dynamic behavior of soluble and particulate constituents:

For the anoxic reactor:
\[
 \frac{dS_i}{dt} = (Q(1-\beta)/aV)\left(([S_i + S_2(R_1 + R_2)] - [1 + R_1 + R_2]S_i) + r_S \right)...
\] (8)
\[
 \frac{dX_i}{dt} = (Q(1-\beta)/aV)\left(([X_i + X_2R_1 + X_{UP}R_2] - [1 + R_1 + R_2]X_i) + r_X \right)...
\] (9)

For the aerobic reactor:
\[
 \frac{dS_i}{dt} = (Q/V)\left((1-\beta)[1 + R_1 + R_2]S_i + \beta[S_i + S_2(R_1 + R_2)] - [1 + R_1 + R_2]S_i) + r_S \right)...
\] (10)
\[
 \frac{dX_i}{dt} = (Q/V)\left((1-\beta)[1 + R_1 + R_2]X_i + \beta[X_2R_1 + X_{UP}R_2] - [1 + R_1 + R_2]X_i) + r_X \right)...
\] (11)

1.3.2 Two CSTRs with material exchange

This scenario depicts a situation where mixing apparatus are poorly situated within the reactor, resulting in rapid mixing in their vicinity, while the remaining region undergoes mixing, albeit at a lesser rate. This situation will influence the distribution of material within the reactor, affecting the different reactions rates due to an uneven distribution of substrates (**Figure 2.B**). In this situation, it is assumed that the anoxic reactor volume \(V \) is split into two fractions: a fraction that undergoes high agitation \((a=\text{highly agitated volume}/V) \) and a fraction with low agitation \(((1-a)=\text{volume with less agitation}/V) \). Material is exchanged between the two-volume sections according to a mass transfer between the two volumes. The material balance for the two-sections is then:

\[
 \frac{dS_i}{dt} = (Q/V)\left((1-\beta)[1 + R_1 + R_2]S_i + \beta[S_i + S_2(R_1 + R_2)] - [1 + R_1 + R_2]S_i) + r_S \right)...
\] (10)
\[
 \frac{dX_i}{dt} = (Q/V)\left((1-\beta)[1 + R_1 + R_2]X_i + \beta[X_2R_1 + X_{UP}R_2] - [1 + R_1 + R_2]X_i) + r_X \right)...
\] (11)
from the highly agitated portion (Fogler, 1999). As with the previous model, the degree of nonideality depends on the values of α and β. The two CSTR with exchange model has been previously used to describe non-ideal mixing in different biological reactors (Le Moullec et al., 2010; Le Moullec et al., 2011; Pereira et al., 2012). Assuming constant values for α, β (for all streams entering), liquid densities and reactor volumes, and reactions taking place only in the reactors, the following equations can be used to describe the dynamic behavior of soluble and particulate constituents:

For the anoxic reactor highly agitated fraction (concentrations are accentuated with 1):

\[
dS_1^1/\text{dt} = (Q(1 + R_1 + R_2)/aV_1)\left(\left[S_1 + S_a(R_1 + R_2)/\left(1 + R_1 + R_2\right) - S_1^1 + \beta(S_2^1 - S_1^1)\right]\right) + rS_2^2 \\
dX_1^1/\text{dt} = (Q(1 + R_1 + R_2)/aV_1)\left([X_1 + X_2R_1 + X_{UP}R_2]/\left(1 + R_1 + R_2\right) - X_1^1 + \beta(X_2^1 - X_1^1)\right) + rX_2^1 \\
\]

(12)

(13)

For the anoxic reactor fraction with less agitated (concentrations are accentuated with 2):

\[
dS_2^2/\text{dt} = (Q(1 + R_1 + R_2)/aV_1)\left(S_1^2 - S_2^2\right) + rS_2^2 \\
dX_2^1/\text{dt} = (Q(1 + R_1 + R_2)/aV_1)\left(X_1^2 - X_2^2\right) + rX_2^1 \\
\]

(14)

(15)

For the aerobic reactor:

\[
dS_2/\text{dt} = (Q(1 + R_1 + R_2)/V_2)\left(S_1^2 - S_2\right) + rS_2 \\
dX_2/\text{dt} = (Q(1 + R_1 + R_2)/V_2)\left(X_1^2 - X_2\right) + rX_2 \\
\]

(16)

(17)

2. Computer simulations

The performance of the PD-AS is simulated dynamically under ideal conditions (CSTR) and real conditions (CSTR with dead volume and two CSTRs with material exchange). The characteristics of treated wastewater are given in Table 3, the kinetic and stoichiometric parameters are given in Table 4. The group of ODEs representing the behavior of all constituents in the system where solved Table 4 Kinetic and stoichiometric parameters used in the simulation (Alex et al., 2008)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_H)</td>
<td>Max. specific growth rate for Heterotrophs (d(^{-1}))</td>
<td>4.0</td>
</tr>
<tr>
<td>(\mu_A)</td>
<td>Max. specific growth rate for Autotrophs (d(^{-1}))</td>
<td>0.5</td>
</tr>
<tr>
<td>(K_S)</td>
<td>Half saturation constant for Heterotrophs (mg COD/L)</td>
<td>10</td>
</tr>
<tr>
<td>(K_{H\text{e}})</td>
<td>Half saturation constant for O(_2) Heterotrophs (mg O(_2)/L)</td>
<td>0.2</td>
</tr>
<tr>
<td>(K_{NO})</td>
<td>Half saturation constant for Heterotrophs (mg NO(_3)-N/L)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\eta_C)</td>
<td>Correction for Anoxic Heterotrophic growth (-)</td>
<td>0.8</td>
</tr>
<tr>
<td>(K_{HO})</td>
<td>Half saturation constant for O(_2) Autotrophs (mg O(_2)/L)</td>
<td>0.4</td>
</tr>
<tr>
<td>(K_{AM})</td>
<td>Half saturation constant for Autotrophic. (mg NH(_3)-N/L)</td>
<td>1.0</td>
</tr>
<tr>
<td>(b_D)</td>
<td>Decay constant for Heterotrophs (d(^{-1}))</td>
<td>0.3</td>
</tr>
<tr>
<td>(b_A)</td>
<td>Decay constant for Autotrophs (d(^{-1}))</td>
<td>0.05</td>
</tr>
<tr>
<td>(k_{NH})</td>
<td>Ammonification rate (l.COD/mg.d)</td>
<td>0.05</td>
</tr>
<tr>
<td>(k_S)</td>
<td>Max. specific Hydrolysis rate (mg COD/mg COD biomass.d)</td>
<td>3.0</td>
</tr>
<tr>
<td>(K_S)</td>
<td>Half saturation constant for Hydrolysis (mg COD/mg COD biomass)</td>
<td>0.1</td>
</tr>
<tr>
<td>(\eta_{NH})</td>
<td>Correction for Anoxic Hydrolysis (-)</td>
<td>0.8</td>
</tr>
<tr>
<td>(\gamma_H)</td>
<td>Heterotrophic yield coefficient (mg biomass/mg COD)</td>
<td>0.67</td>
</tr>
<tr>
<td>(\gamma_A)</td>
<td>Autotrophic yield coefficient (mg biomass/mg N)</td>
<td>0.24</td>
</tr>
<tr>
<td>(f_{PR})</td>
<td>Particulate yielding biomass fraction (-)</td>
<td>0.08</td>
</tr>
<tr>
<td>(k_{BA})</td>
<td>Nitrogen fraction in biomass (mg N/mg COD biomass)</td>
<td>0.08</td>
</tr>
<tr>
<td>(k_{BP})</td>
<td>Nitrogen fraction in biomass products (mg N/mg COD biomass)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 3 Wastewater characteristics used in the simulations (Vanhooren and Nguyen, 1996)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_n^a)</td>
<td>30</td>
</tr>
<tr>
<td>(S_a^a)</td>
<td>70</td>
</tr>
<tr>
<td>(X_n^a)</td>
<td>52</td>
</tr>
<tr>
<td>(X_a^a)</td>
<td>200</td>
</tr>
<tr>
<td>(X_{aa}^a)</td>
<td>28</td>
</tr>
<tr>
<td>(X_{Aa}^a)</td>
<td>5.0</td>
</tr>
<tr>
<td>(S_n^b)</td>
<td>0.25</td>
</tr>
<tr>
<td>(S_a^b)</td>
<td>0.25</td>
</tr>
<tr>
<td>(S_{aa}^b)</td>
<td>30.0</td>
</tr>
<tr>
<td>(S_{Aa}^b)</td>
<td>7.0</td>
</tr>
<tr>
<td>(X_n^b)</td>
<td>11.0</td>
</tr>
<tr>
<td>(X_a^b)</td>
<td>10.0</td>
</tr>
</tbody>
</table>

a: mg COD/L; b: mg O\(_2\)/L; c: mg N/L; d: mol/L

2. Computer simulations

The performance of the PD-AS is simulated dynamically under ideal conditions (CSTR) and real conditions (CSTR with dead volume and two CSTRs with material exchange). The characteristics of treated wastewater are given in Table 3, the kinetic and stoichiometric parameters are given in Table 4. The group of ODEs representing the behavior of all constituents in the system where solved Table 4 Kinetic and stoichiometric parameters used in the simulation (Alex et al., 2008):
$BOD_D = 0.25\left(S_T^2 + X_{UF}^2 + (1-f)(X_{BA}^{UF} + X_{BR}^{UF})\right)$ \hspace{1cm} (21)

D. Chemical oxygen demanding (Rittmann and McCarty, 2001) organics in effluent and waste (COD_D and COD_W):

$$COD_D = S_T^2 + S_S^2 + X_{UF}^2 + X_{BR}^{UF} + X_{BA}^{UF} + X_{BR}^{UF} + X_{BA}^{UF} + X_{BR}^{UF}$$ \hspace{1cm} (22)

$$COD_W = S_T^2 + S_S^2 + X_{UF}^2 + X_{BR}^{UF} + X_{BA}^{UF} + X_{BR}^{UF} + X_{BA}^{UF} + X_{BR}^{UF}$$ \hspace{1cm} (23)

To study the system performance under real conditions, multiple simulations were performed while varying the values of the two parameters in the real reactor models in order to reflect varying degrees of nonideal flow: For the CSTR with dead volume model, α was changed from 1 to 0.1, while β was changed from 0 to 0.9, and for the two CSTRs with exchange model α was changed from 0.9 to 0.1, while β was changed from 0.01 to 0.9. The aforementioned values for α and β were chosen to depict a moderate, intermediate, and extreme non-ideal flow scenarios.

![Graphs](image)

Fig. 3 PD-AS performance under ideal mixing condition; A: TKN_W, B: TKN_{E}, C: SNH_{W}, D: SNH_{E}, E: BOD_D and COD_D, and F: BOD_W and COD_W.

3 Results and Discussion

3.1 Ideal completely mixed reactors

The PD-AS system operation was simulated for 30 days. Figure 3 shows the system performance as a function of time. Effluent steady-state SNH, SNO, and TKN_E concentrations were 1.8, 12.5, and 3.9 mg N/L, respectively, while BOD_D and COD_D were 16.4 mg/L and 48.9 mg/L, respectively. The daily waste included 626 mg N/L of TKN, 1271 mg/L of BOD, and 8625 mg/L of COD. The simulation outcome was comparable to other published simulations results for similar PD-AS reactor sizes and feed wastewater composition (Alex et al., 2008).

3.2 CSTR with bypass and dead volume

Figure 4 shows the effect of varying the non-ideal mixing parameters on the concentration of nitrogen compounds in the system. As can be seen, the system’s effluent TKN concentration varied marginally with increasing mixing non-idealities (Figure 4A) (i.e. increased bypass fraction and dead volume fraction). This can be attributed to the fact that effluent TKN is mainly soluble, and removed in the aerobic reactor, where mixing performance was assumed ideal.
The same trend was noticed for the total ammonia in the effluent, which remained relatively constant (Figure 4C). \(TKN_w \) increased with increasing mixing non-idealities, as can be seen in Figure 4B. This is attributed to the increase in the heterotrophic biomass in the system (from 2570 to 2980 mg COD/L) as a result of the increase in substrate availability in the aerobic reactor brought by the increase in bypass ratio. The \(TKN_w \) increase may affect anaerobic treatment for the wasted biomass (Chen et al., 2008; Tezel et al., 2014), due to the elevated levels of nitrogen. On the other hand, the effluent nitrate concentration increased drastically as the system was shifted towards non-ideal mixing conditions. As seen in Fig. 4C, \(S_{N0,E} \) exceeded 20 mg N/L at \(\alpha \leq 0.4 \) and \(\beta \leq 0.4 \). The decrease in \(\alpha \) (increase in dead volume fraction) had a larger effect on \(S_{N0,E} \) compared to \(\beta \). Similar performance short comes were observed by Manenti et al. (Manenti et al., 2018), when the actual retention time failed in assuring an acceptable treatment level below a minimum threshold value. Collivigneirelli (Collivigneirelli et al., 2018) reported that reducing the dead volume fraction will result in an enhancement of nitrate removal, while Kjellstr and co-researchers (Kjellstrand et al., 2005) reported that the presence of a dead volume in the reactor will reduce the denitrifying capacity due to reduced active volume, and high nitrate concentration in the effluent can appear due to the short-circuiting stream (bypass). Figure 5 shows the effect of varying the non-ideal mixing parameters on the concentration of BOD and COD in the system. As seen in Figure 5A and Figure 5B, increasing mixing non-idealities had a slight effect on \(BOD_v \) and \(COD_v \). However, as with \(S_{N0,E} \), decreasing \(\alpha \) had the main effect. This can be attributed to the reduction in the anoxic reactor’s active volume size, leading to a lesser conversion due to smaller real retention times (Fogler, 1999). This connects to the increase in \(S_{N0,E} \) as seen in Figure 4D since (as mentioned in section 1) nitrite is utilized exclusively by the heterotrophic biomass organic carbon mineralization in the anoxic reactor.
As seen in Fig. 5C and Fig. 5D, both of BOD_W and COD_W concentrations increased in the waste stream as a direct response to increased biomass in the system, which was brought by the greater than before availability of substrate in the aerobic reactor due to increased bypass fraction and decreased active volume fraction in the anoxic reactor. Collivignarelli (Collivignarelli et al., 2018) reported that reducing the dead volume fraction will enhance COD and BOD. The increase in the concentrations of BOD_W and COD_W in the waste stream, coupled with the increase of TKN_W, will amplify the load on waste disposal facilities in the wastewater treatment plant. Similar to what has been observed with $SNO-E$ above, the active volume fraction (α) had a larger effect on the system’s performance compared to the bypass fraction (β). It must be added that, apart from nitrate concentration, the resulting changes in the PD-AS’s performance were related to particulate constituents in the system. However, their concentration in the system is directly correlated with the settler’s performance (i.e. SE value). The SE value was assumed constant to eliminate the effect of the settler’s performance on the predicted outcome.

3.3 Two CSTRs with material exchange

As mentioned in section 2.3.2, this model describes a scenario where the mixing apparatus in the anoxic reactor are poorly positioned, resulting in rapid mixing in their vicinity, while the remaining region undergoes mixing, albeit at a lesser rate. Carried out simulations for the system’s operation at the current non-ideal mixing scenario showed that, to some extent, its performance was unaffected. This was in a specific range of the mixing model α and β values: $0.4 \leq \alpha \leq 0.9$ and $0.1 \leq \beta < 0.9$. Table 5 shows the unaffected system’s performance. Figure 6 and Figure 7 shows the performance of the system beyond the abovementioned range for the mixing model parameters values (i.e. second range at $0.1 \leq \alpha < 0.4$ and $0.01 \leq \beta < 0.1$). It is clear that the system’s effluent TKN concentration slightly (Figure 6A) varied with increasing mixing non-idealities within the second range (i.e. reducing the rapid agitation zone and material exchange fractions). This took place because TKN is mainly removed in the aerobic reactor, which its mixing performance was assumed ideal. The relatively constant total ammonia in the effluent (Figure 6C) suggests that that ammonia removal is
unaffected.

Table 5 Effluent constituents of the PD-AS system with and without ideal mixing conditions

<table>
<thead>
<tr>
<th>Effluent Constituents</th>
<th>Ideal mixing</th>
<th>CSTRs with material exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKN_e</td>
<td>3.9 mg N/L</td>
<td>3.9±0.09 mg N/L</td>
</tr>
<tr>
<td>TKN_w</td>
<td>626.5 mg N/L</td>
<td>628.5±4.8 mg N/L</td>
</tr>
<tr>
<td>$S_{SNH,E}$</td>
<td>1.9 mg N/L</td>
<td>1.8±0.05 mg N/L</td>
</tr>
<tr>
<td>$S_{SNO,E}$</td>
<td>12.6 mg N/L</td>
<td>14.1±1.2 mg N/L</td>
</tr>
<tr>
<td>BOD_e</td>
<td>16.2 mg BOD/L</td>
<td>16.7±0.9 mg BOD/L</td>
</tr>
<tr>
<td>COD_e</td>
<td>48.9 mg COD/L</td>
<td>49.1±0.2 mg COD/L</td>
</tr>
<tr>
<td>BOD_w</td>
<td>1271.9 mg BOD/L</td>
<td>1278.8±15.2 mg BOD/L</td>
</tr>
<tr>
<td>COD_w</td>
<td>8625.6 mg COD/L</td>
<td>8652.3±61.5 mg COD/L</td>
</tr>
</tbody>
</table>

a: Average ± Standard Deviation.

Fig. 6 Simulated PD-AS nitrogen related performance under the 2 CSTRs with material exchange non-ideal mixing effects at $0.1 \leq \alpha < 0.4$ and $0.01 \leq \beta < 0.1$: A: TKN_e, B: TKN_w, C: $S_{SNH,E}$, and D: $S_{SNO,E}$.

However, the TKN_w (which is mainly comprised from particulates) increased with increasing mixing non-idealities (Figure 6B), but only at extreme non-ideal mixing condition, when the anoxic reactor volume was mostly affected by low mixing due to very slow agitation ($\alpha < 0.3$ and $\beta < 0.01$). Operation within this range also increased the heterotrophic biomass in the system (from 2570 to 2708±136 mg COD/L), due to ineffective utilization of readily biodegradable organic carbon in the anoxic reactor (S_y+X_y increased in
the anoxic reactor effluent from 82.2 to 117±12mg COD/L), and were utilized by the aerobic reactor. Similar to the dead volume/bypass model, the increase TKNw concentration and biomass concentration in the waste stream may affect anaerobic treatment processes for the wasted biomass. The effluent nitrate concentration increased drastically as the system was shifted towards extreme non-ideal mixing conditions. As seen in Fig. 6C, S_{SNH-E} exceeded 20mg N/L at $\alpha < 0.2$ and $\beta < 0.01$. This behavior mimicked the result seen in the dead volume/bypass model, however at more extreme non-ideal mixing conditions in this model. The increase is probably a result of the anoxic reactor's active volume becoming extremely low (i.e. fast residence times), not permitting any effective reactions. This can be connected to the increase of readily biodegradable organic carbon in the anoxic reactor (see before), being not utilized fully under these conditions. Results shown in Fig. 6 showed that the system’s performance was more affected by the high agitation fraction (α). Fig. 7 shows the effect of varying the non-ideal mixing parameters on the concentration of BOD and COD in the system.

As seen in Fig. 7.A and Fig. 7.B, only extreme levels of mixing non-idealities had an effect on BOD_x and COD_x. The increase is probably related to the increased heterotrophic biomass in the system (from 2570 to 2708±136 mg COD/L), due to ineffective utilization of readily biodegradable organic carbon in the anoxic reactor. As seen in Fig. 7.C and Fig. 7.D, both of BOD_w and COD_w concentrations increased in the waste stream as a direct response to increased biomass in the system, which was brought by the greater than before availability of substrate in the aerobic reactor due to reduced active anoxic reactor volume. The increase in the concentrations of BOD_w and COD_w in the waste stream will amplify the load on waste disposal facilities in the wastewater treatment plant. The aforementioned results showed that the system’s performance was more affected by the high agitation fraction (α). Results shown in Figs. 6 and 7 showed that the non-ideal mixing scenario depicted by the two CSTRs with the material exchange had minor effects on the performance of the PD-AS system. Even so, these effects occurred at extreme non-ideal situations. However, this stipulation could be related to the specific operating conditions of the PD-AS under investigation. Moreover, previously published work suggests that increasing the number of CSTRs (i.e. compartments) in this model could provide a more representative depiction of the mixing non-idealities in AS systems (Liotta et al., 2014).
Conclusions

The system’s performance was largely affected by the presence of a dead volume/bypass scenario compared to the two mixing zones with a material exchange scenario. Under non-ideal mixing conditions, effluent concentrations of Total Kjeldahl Nitrogen, organic carbon increased marginally. On the other hand, the effluent concentration of nitrate increased significantly under the same conditions, indicating a reduction in nitrate removal efficiency. The heterotrophic biomass concentration in the system increased under non-ideal mixing conditions. This by its part resulted in an increase in the waste stream concentrations of Total Kjeldahl Nitrogen and organic carbon. This study provides an insight into the behavior of pre-denitrification activated sludge systems when affected by non-ideal mixing conditions. This additionally, it identified some performance discrepancies that could-if found in a real system-indicate the presence of a dead volume/bypass or two mixing zones mixing non-idealities in the anoxic reactor.

Nomenclature

Symbols

\[S \] = Dissolved material concentration [mg COD/L]
\[S_i \] = Dissolved material concentration in the feed [mg COD/L]
\[S_{sl} \] = Soluble inert organics concentration [mg COD/L]
\[S_R \] = Readily biodegradable (soluble) substrate concentration [mg COD/L]
\[X_i \] = particulate material concentration [mg COD/L]
\[X_H \] = Particulate material concentration in the feed [mg COD/L]
\[X_I \] = Particulate inert organics concentration [mg COD/L]
\[X_C \] = Slowly biodegradable (particulate) concentration [mg COD/L]
\[X_{AH} \] = Active heterotrophic biomass concentration [mg COD/L]
\[X_{AS} \] = Active autotrophic biomass concentration [mg COD/L]
\[X_P \] = Non-biodegradable particulates from cell decay concentration [mg COD/L]
\[S_{O2} \] = Dissolved oxygen concentration [mg O_2/L]
\[S_{sat} \] = Saturation dissolved oxygen concentration [mg O_2/L]
\[S_{NO} \] = Nitrate concentration [mg N/L]
\[S_{NH} \] = Free and ionized ammonia concentration [mg N/L]
\[S_{SO} \] = Soluble biodegradable organic nitrogen concentration [mg N/L]
\[X_{BO} \] = Particulate biodegradable organic nitrogen concentration [mg N/L]
\[S_{alk} \] = Alkalinity [mol/L]
\[K_L \] = Oxygen transfer coefficient [d^{-1}]
\[Q \] = Feed wastewater flow rate [m^3/d]
\[Q_W \] = Waste flow rate [m^3/d]
\[R_1 \] = Nitrate recycle ratio [-]
\[R_2 \] = Solids recycle ratio [-]
\[V_1 \] = Anoxic reactor volume [m^3]
\[V_2 \] = Aerobic reactor volume [m^3]
\[r \] = Reaction rate [mg/L.d]
\[K_{X} \] = Half saturation constant for Heterotrophs [mg COD/L]
\[K_{CH} \] = Half saturation constant for O_2 Heterotrophs [mg O_2/L]
\[K_{SO} \] = Half saturation constant for Heterotrophs [mg NO_3-N/L]
\[K_{DA} \] = Half saturation constant for O_2 Autotrophs [mg O_2/L]
\[K_{DH} \] = Half saturation constant for Autotrophic [mg NH_3-N/L]
\[b_H \] = Decay constant for Heterotrophs [d^{-1}]
\[b_A \] = Decay constant for Autotrophs [d^{-1}]
\[k_a \] = Ammonification rate [L.mg COD/mg.d]
\[k_b \] = Max. specific Hydrolysis rate [mg COD/mg COD.d]
\[K_H \] = Half saturation constant for Hydrolysis [mg COD/mg COD]
\[y_H \] = Heterotrophic yield coefficient [mg biomass/mg COD]
\[y_A \] = Autotrophic yield coefficient [mg biomass/mg N]
\[f_p \] = Particulate yielding biomass fraction [-]
\[i_{is} \] = Nitrogen fraction in biomass [mg N/mg COD biomass]
\[i_{isor} \] = Nitrogen fraction in biomass products [mg N/mg COD biomass]
Greek letters

\[\alpha = \text{Non-ideal mixing parameter 1} \]
\[\beta = \text{Non-ideal mixing parameter 2} \]
\[\mu = \text{Max. specific growth rate for Heterotrophs} \]
\[\mu_A = \text{Max. specific growth rate for Autotrophs} \]
\[\eta = \text{Correction for Anoxic Heterotrophic growth} \]
\[\eta_A = \text{Correction for Anoxic Hydrolysis} \]

References

Henze, M., Gujer, W., Mino, T., and Van Loosdrecht, M. "Activated sludge models asm1, asm2, asm2d and asm3", IWA publishing (2000).

Utilization of Volcanic Tuffs as Construction Materials

Kamel Al-Zboon1, Jehovah Al-Zou’by1, Ziad Abu-Hamatteh2

1) Environmental Engineering Department, Al-Husn University College, Al-Balqa Applied University, Irbid, Jordan.
2) Civil Engineering Departments, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, 11134 Jordan

The current study examines the possibility of utilizing the Jordanian volcanic tuff aggregates as a source of many construction materials. Different mixtures were prepared by replacing the commonly used normal aggregate with volcanic tuffs aggregate to determine the best mixing proportion with similar size in different ratios as 0, 25, 50, 75 and 100%. The impacts of this replacement on brick’s compression strength, dry weight and water absorption, transverse strength, absorption and weight of terrazzo tiles, loss Anglos and CBR values have been examined and evaluated. The results revealed an improvement in compressive strength of bricks at a replacement ratio of 25%, with concomitant reduction at higher replacement ratios, while water absorption increased as the ratio of tuff increases. Transverse strength of terrazzo tiles was recorded as 6.08, 5.78, 5.78, 5.21 and 5.19 MPa at substitution ratios of 0, 25, 50, 75 and 100%, respectively. Utilization of volcanic tuffs resulted in a significant reduction in the dry weight of bricks and terrazzo provided lightweight material. CBR test indicated that this material can be used successfully in foundations and as a sub-base material. The obtained results buttressed the benefit of utilization of natural volcanic tuffs as construction materials.

Keywords: Volcanic Tuffs, Construction Materials, Terrazzo Tiles, Bricks, Pavement Materials, Jordan.

Introduction

Selection and preparation of construction materials are of prime importance in all major engineering projects, including road pavements, concrete mixes and other construction materials such as tiles and bricks. The engineering properties of the construction materials are supposed to meet the standards in order to achieve the minimum requirements in terms of strength and durability. (Bell, 2007). The selection of construction materials basically depends on the common index properties of rocks, such as durability, strength, density permeability, and porosity. Other interference conditions such as climate conditions, project purposes and cost-effectiveness should be considered during the selection and preparation process of the construction materials. The utilization of the local construction materials while maintaining the required properties and specifications represent a challenge for civil engineering all over the world (McLean and Gribble, 2005; Rahn, 1996; Johnson and DeGraff 1988). In light of the overpoweringly increasing demand for raw materials by various construction, sectors created a serious shortage in some building materials. Therefore, in order to meet the dramatically increasing demand, uncommon sources of such materials with acceptable engineering properties becomes precedence. Volcanic tuff (VT) is considered as a promising source of natural construction materials. Volcanic tuff, one of the most important natural pozzolan materials, has been used since ancient times in buildings, bridges, walls, and masonry works. Currently, it is used in many countries in the world for masonry mortars, lightweight concretes and thermal for acoustic insulation materials (Balog et al., 2014). Volcanic tuff with its unique structure and unique properties could serve as a construction material in many engineering projects. Tuff is a relatively soft, high porous with high surface area and low-density igneous rock formed from volcanic ash or dust (Al-Zboon and Al-Zou’by, 2017). It is considered as a good inexpensive source for lightweight aggregate concrete leading to a considerable cost saving in various construction materials (Turkmenoglu and Tankut 2002; Negis, 1999; Kilçarslan, 2011). The feasibility of using volcanic tuff as a light-weight aggregate in cement and concrete industry has been reported by many researchers (Turkmenoglu and Tankut 2002; Al-Zboon and Al-Zou’by, 2017; USBR, 1992; Kan and Gul, 1996; Kılıç et al., 2009; Augenti and Paresi, 2010; Faella et al., 1992; Smadi and Migdady, 1991; Kavasa and Evcin, 2005; Ahali et al., 2006). The specific gravity of VT is about 1.84, while it is about 2.52 for ordinary sand. For this reason, VT can provide lightweight concrete with a density of 1440-1840kg/m³ in comparison with 2400kg/m³ for normal aggregate concrete (Fredrick, 2014). Al-Zboon and Al-Zou’by (2017) used VT for concrete production and the results showed significant improvement in compressive and flexural strength at a replacement ratio of 25%, with reductions at higher ratios. Al-Zou’by and Al-Zboon (2014) utilized VT in cement mortar and found that a replacement ratio of 50% enhanced compressive strength and flexural strength. Yasin et al., (2012) studied the Jordanian tuffs for use in concrete production and they replaced 20% of the fine aggregates by volcanic tuff and thereby the concrete compressive strength improved significantly. Moreover, Fredrick (2014) replaced normal sand with VT in concrete mixes and reported an increase in the compressive strength of concrete cubes with 2.8%, 7.4%, 11.1% and 14.0% and 5.0% for replacement ratios of 20%, 40%, 60%, 80%, and 100%. In contrast, tensile strength decreased by 18.0%, 12.4%, 9.6%, 10.8% and increased (1.2%) for the same ratios respectively. Also, Smadi and Migdadi (1991) used successfully VT to produce high strength lightweight concrete and achieved high compressive strength as high as 60 MPa at 90 days. Limitations of using VT in concrete mixes include but not limited to the high water absorption (11.5%), high bleeding (28ml) and low slump value (<10mm) (Al-Zboon and Al-Zou’by, 2017).
Normal aggregate was replaced with the same size of VT at different ratios (Table 1), namely: B1 (25% VT), B2 (50% VT), B3 (75% VT) and B4 (100% VT), in addition to the control B0 (0% VT). The properties of VT have been determined previously (Al-Zboon and Al-Zouby, 2017), where the oven-dry specific gravity ranged from 1.96 to 1.82 with absorption ratio of 10.1 and 11.5% for coarse and fine VT, respectively. For NA, the specific gravity ranged from 2.6 to 2.55 with absorption ratio of 1.2 to 1.7% for coarse and fine NA, respectively. Constant rate of Portland cement (200kg/m³) was added to the aggregate component of the mix (NA and VT) and all are blended in a dry condition. Also, a constant amount of water (190kg/m³) was gradually added to the mixture to achieve homogeneity and plastic form. A Mechanical mixer with a volume of 0.2m³ was used for mixing the components for the required time of 5minutes.

2.2 Molding and curing

At the end of mixing time, the mixture was poured in a container with enough size. Then, the mixture was transferred to the steel mold with an internal dimension of 40x20x15cm. When the mold is full of the mixture, it is subjected to mechanical vibration and compaction hydraulic force which resulted in high density and high strength. The compacted bricks are out of the molds and put on a clean, elevated surface and labeled with the required information includes the type of batch (B1, B2,...) and date of production. After drying for 24 hours, bricks were sprinkled with water for three days and then transferred to the storage for curing area according to the Jordanian standard N. 603/2 (MPWH, 1985). Twenty-four samples of bricks were taken for each mixing ratio B1, B2, and B3, while only six samples were taken for B4 and B5 because the samples failed and did not form as required and the material threw out after de-molding.

2.3 Laboratory tests

Upon completing the 28 days incurring period, the bricks samples were analyzed in terms of density and compressive strength according to the standard method, ASTM C67 / C67M-18. In the lab, the samples were left for one hour for drying their surface, then dimensions and void area of bricks were determined. Initial absorption ratio was determined for three samples of each batch using oven-dried to equilibrium. The compressive strength of brick samples is determined using the hydraulic compression test machine has a maximum capacity of 2000 kN and capable to apply constant loading rate. Test procedure and speed of testing was conducted following ASTM C-67. The compressive strength of bricks was determined using the following equation:

\[F = \frac{P}{A} \]

Where F is the compressive strength (kN/cm²), P is the applied force (KN), and A is the cross-sectional area (cm²) of the brick in contact with the applied force.
2.4 Utilization of volcanic tuff in formulation of terrazzo tiles

Volcanic aggregates were added to the standard mixture with different ratios (Table 2). Except for the tuff content, the other parameters were kept constant for all batches including cement and water content, cement: aggregate ratio, quartz content of the top layer and mixing time. NA, VT, and cement were blended in a dry phase to achieve materials homogeneity, then water was added gradually with continuous mixing until achieving homogenous form (about 4 minutes).

2.4.1 Molding and curing

In the beginning, a quartz layer with cement (10mm) was put in mechanically vibrated mold with a dimension of 30x30x3cm and then the homogenous mixture was poured in the mold. After the mold is filled with mixture, it is subjected to a hydraulic force of 14N/mm². Then, the formed tiles were de-molded and put in humid conditions for two days. For curing purposes, samples were merged in curing tank for three days and then stored in humid conditions until the day of testing.

2.4.2 Laboratory tests

After 28 days of fabrication, terrazzo tiles samples were tested for transverse strength at drying conditions, absorption, and density. The specimen was placed horizontally on the bearers and subjected to loading with constant increase until the specimen fails. Transverse strength was determined for 12 samples of each batch while the absorption ratio was tested for three randomly selected samples of each batch.

2.5 Utilization of volcanic tuff as a pavement material (CBR Test)

2.5.1 Material and Batching

CBR test was conducted according to D1883-07, where 5 kg sample of volcanic tuff were taken, then water was added to the sample and mixed thoroughly. Spacer disc is placed over the base plate at the bottom of the mold and a coarse filter and a paper is placed over the spacer disc. The mold was cleaned and oil was applied, then the sample was filled in the mold to the 1/5 of the total depth. The layer was compacted by giving 56 evenly distributed blows using a hammer of weight 4.89 kg. The top layer of the compacted sample is scratched and again a second layer is filled and the process was repeated. After the third layer addition, the collar was also attached to the mold and the process was continued. After the fifth layer collar was removed and excess materials were struck off, then the base plate was removed and the mold inverted and it was clamped to a base plate. Surcharge weights of 2.5 kg were placed on the top surface of the sample. Three sample of coarse material (at least half the material is retained on sieve No. 200) and three samples of fine materials (materials passing sieve No. 200) were taken.

2.5.2 Laboratory test

Mold containing specimen was placed in position on the testing machine and the penetration plunger was brought in contact with the sample and a load of 4 kg (seating load) was applied so that contact between sample and plunger was established, then dial readings are adjusted to zero and load is applied such that penetration rate is 1 ±0.2 mm per minute and load was recorded. The values in N at penetrations of 2.5 and 5.0 mm were recorded and the bearing ratio for each was calculated. The greatest value calculated for penetrations at 2.5 and 5.0 mm recorded as the CBR.

\[CBR = \frac{P \times 100}{Ps} \]

Where, \(P \): Measured pressure for sample (N/mm²), \(Ps \): Achieve pressure at equal penetration standard soil (N/mm²).

2.5.3 Hardness of raw material

This test was conducted to determine the resistance and degradation of aggregates and its resistance to abrasion impact in the Los Angeles Machine according to ASTM C-131. The test is widely used as an indicator of the relative quality or competence of aggregates. A sample of 5 kg of coarse aggregate ware washed and dried at the oven (103 to 105 °C) to substantially constant weight. The sample was placed in the LA abrasion testing machine, and then the machine was rotated at a speed of 30 to 33 rpm

Table 2: Materials used for different batches of terrazzo tiles.

<table>
<thead>
<tr>
<th>Batch</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of tuff (%)</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Percent of normal aggregate (%)</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Dimension of tiles (cm)</td>
<td>30303</td>
<td>30303</td>
<td>30303</td>
<td>30303</td>
<td>30303</td>
</tr>
<tr>
<td>Number of samples</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>
for 500 revolutions. The materials were discharged from the LA abrasion machine and separated on sieve No. 12 (1.70mm). The weight of material coarser than sieve No. 12 was recorded, and oven-dry to a constant mass (105). After cooling, the mass was recorded.

3 Results and Discussion

3.1 Utilization of volcanic tuff in bricks formulation

After 24 hours, the formed bricks were removed from the molds, and it was found that the samples number B4 and B5 were not formed and no cohesion occurred as the material threw out after de-molding. Samples number B1 and B3 with a high ratio of volcanic tuff (75% and 100%) show high water absorption which decreased the available water for reaction and therefore become insufficient to complete the hydration process and subsequently to harden the bricks. Sample number B2 with 25% volcanic ratio provided the highest compression strength equal to 8.7 MPa whereas, B1 (control) reported 6.44 MPa and finally the lowest value was recorded for B3 with 5.96 MPa (Figure 1a). Although all batches achieved Jordanian standards for unloaded bricks of 3.44 MPa (70kg/cm²), only B2 was complied with Jordanian standards for loaded bricks of 6.87MPa (70kg/cm²). This result indicated that low substitution of normal aggregate with volcanic tuff (25%) can be used successfully to improve the compressive strength of bricks. This result is in line with that obtained by Al-Zboon and Al-Zou’by (2017), they reported that the substitution of VT with 25% improved the compression strength of concrete. Also, Al Dwairi et al., 2018 reported that VT improved the strength characteristics of concrete. The dry weight of bricks’ samples decreased from 12.8 kg/brick for B1 to 12.6 and to 11.73 kg/brick for B2 and B3, respectively, showing an increase in density by 2% and 8.6% respectively (Figure 1b). This reduction is probably due to the lower density of volcanic tuff in comparison with normal aggregates. In contrast, the absorption ratio increased significantly with VT increase (Figure 1c). Higher absorption of B2 and B3 is attributed to the higher water absorption of the raw material (VT) due to the high voids ratio and specific surface area. Many researchers found that the adding of VT to the concrete and cement mortar mixture increased water absorption and reduced density (Al-Zboon, and Al-Zou’by, 2014; 2017).

3.2 Utilization of volcanic tuff in terrazzo tiles formulation

After 28 hours, the formed tiles were tested for transverse strength. The obtained results indicated that the average transverse strength of all tested batches exceeded the value limited in Jordanian standards (30 kg/cm², 2.94MPa). The strength values of the tested samples range from 5.21-6.08 MPa in comparison with the control batch (T1), transverse strength of tiles decreased by 4.91, 4.97, 14.3, and 14.6% for T2, T3, T4, and T5, respectively (Figure 2a). While T2 and T3 showed a slight decrease in the transverse strength, T3 and T4 showed a high reduction. Good strength of VT may be attributed to the high content of SiO₂ which plays a significant role in the strength especially at the early age of the construction material (Ababneh and Matalkah, 2018). The fine silica in VT can combine with calcium hydroxide to form stable compounds like calcium silicates, which have cementation properties (Al Dwairi et al., 2018). These results revealed that the use of VT with a mixture up to 50% ratio (T3), did
not affect the strength significantly. These results indicate that the volcanic aggregates could be used, with a high percentage, in the bottom layer of terrazzo tiles. Regarding the density, it was found that there is no significant difference between all samples, where the weight of a tile ranged from 7.32 for T1, to 6.93 kg for T5 with a 5.2% reduction (Figure 2.b). Lower density of produced tiles was attributed to the lower density of VT in comparison with NA as mentioned above. Kavasa and Evcin (2005) found that VT can be used successfully in the production of wall tiles with an insignificant impact on the compressive strength at replacement ratio of 9, 14, 15%wt. Abu Baker (2009) found that the utilization of volcanic tuff in concrete mixture resulted in a reduction in concrete density by 14%. Absorption ration increased from 1.1 for T1 to 2.0, 2.6, 4.6, and 5.3 for T2, T3, T4, and T5, respectively (Figure 2.c). Due to its high voids and surface area, VT has high water absorption which explains the obtained results. The higher water absorption at higher replacement ratio was attributed to the presence of K2O (Kavasa and Evcin, 2005).

3.3 Utilization of volcanic tuff as pavement materials (CBR test):

Figure 3 illustrates the results of CBR test. Based on calculation, CBR for the fine and coarse materials were 28.8% and 33.33%, respectively. Therefore, the values of CBR indicate that the materials are considered a good subsidiary for foundation and subfoundation utilization purposes (Table 3).

The calculated Los Angeles Abrasion loss was 27.89%. There is no standard Los Angeles abrasion specification for super pavement mix design. Specifications are typically established by local agencies. Typically, U.S. specifications limit the abrasion of coarse aggregate for hot mix asphalt used to a maximum ranging from 25 to 55%, with most states using a specification of 40 or 45%. Requirements for stone matrix asphalt tend to be lower; AASHTO specifies a maximum Los Angeles abrasion loss of 30% for stone matrix asphalt. The obtained result of the LA test indicated that VT complies with international standards and is suitable to be used in hot asphalt mixes.

Conclusions

Volcanic tuff is considered an attractive and promising option to be used in various construction projects. The study indicated that bricks sample number B2 with 25% volcanic ratio provided the highest compression strength equal to 8.7 MPa in comparison with B1 and B3 as the lowest value was recorded for B1 (75%) as 5.96 MPa. Moreover, the dry weight of the sample decreased from 12.8 kg/brick for B1 to 11.73 kg/brick for B3, provided lower density construction material. However, the absorption ratio of
samples increased from for B_t to B_t representing 5.63% and 7.33% respectively indicating the high water absorption of volcanic tuff. The strength values for all tested samples range from 5.19-6.08 MPa and all batches exceeded the limit of JS (2.94 MPa). These results indicate that the use of volcanic aggregate with mixture up to 50% ratio (T_3), did not affect the Terrazzo tiles strength significantly. The density of tiles decreased with VT ratio increase while the absorption ratio increased accordingly. CBR test results for the fine and coarse materials were 28.8% and 33.33%, respectively. Therefore, the values of CBR indicate that the materials are considered as good pavement materials in foundation and sub-foundation purposes. LA Abrasion loss was determined as 27.89% which falls within the specifications limit of coarse aggregate for hot mix asphalt. This research has the following limitations:

1. Samples of terrazzo tiles should be tested for thermal conductivity.
2. Sieve analyses should be done for the test of using VT as a pavement material.
3. It is necessary to conduct a national project for the utilization of VT in concrete applications.

Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR</td>
<td>California Bearing Ratio</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>VT</td>
<td>Volcanic tuff</td>
</tr>
<tr>
<td>NA</td>
<td>Normal Aggregates</td>
</tr>
<tr>
<td>LA</td>
<td>Los Angeles</td>
</tr>
<tr>
<td>P</td>
<td>Measured pressure</td>
</tr>
<tr>
<td>Ps</td>
<td>Achieve pressure</td>
</tr>
<tr>
<td>F</td>
<td>Compressive strength</td>
</tr>
<tr>
<td>Ps</td>
<td>Achieve pressure at equal penetration standard soil</td>
</tr>
</tbody>
</table>

References

McLean, A.C., and C. Gribble, Geology for Civil Engineers, 2ndEdn., University of Glasgow, Taylor and Francis (2005).

